LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SIXTH SEMESTER – APRIL 2023

16/17/18UMT6MC03 – DISCRETE MATHEMATICS

Date: 05-05-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

Answer ALL questions

PART – A

- 1. Define declarative sentence.
- 2. What is a quantifier? List some universal quantifiers.
- 3. Prove that in a lattice if $a \leq b$ then $a \oplus b = b$.
- 4. How do you justify the consistency of any two given premises?
- 5. Write the symbolic form of the statement, 'The crops will be destroyed if there is a flood'.
- 6. Define semigroup homomorphism.
- 7. When do you say an element to be idempotent?
- 8. Explain 2-place predicate with an example.
- 9. Discuss the conditions for a Boolean expression to be symmetric.
- 10. What is a complemented lattice?

PART - B

Answer any FIVE questions

- 11. Construct the truth table for the following formulae
 - (a) $(Q \land (P \to Q)) \to P$
 - (b) $\exists (P \land Q) \rightleftharpoons (\exists P \lor Q)$
- 12. Check whether the formula $(Q \land (P \rightarrow Q)) \rightarrow P$ is a tautology.
- 13. Prove that the conclusion $R \lor S$ follows from the premises $(C \lor D) \rightarrow \forall H$,

 $\exists H \rightarrow (A \land \exists B) \text{ and } (A \land \exists B) \rightarrow (R \lor S) \text{ using equivalence laws.}$

- 14. Show that in a complemented distributive lattice $a \le b \Leftrightarrow a \ast b' = 0 \Leftrightarrow a' \oplus b = 1 \Leftrightarrow b' \le a'$.
- 15. Let (S,*) be a semigroup. Then show that there is a homomorphism $g: S \to S^S$ when (S^S, \circ) is the semigroup of functions from S to S under the operation of composition.
- 16. Write the properties that satisfies Boolean algebra with their identities.
- 17. State and prove De Morgan's law of Lattice.
- 18. Define least upper bound and greatest lower bound and prove that every finite lattice is bounded.

 $(5 \times 8 = 40)$

Max.: 100 Marks

 19. (a) Express the following Boolean expressions in an equivalent sum of the product of forms in three variables x₁, x₂ and x₃. (i) x₁ * x₂. (ii) x₁ ⊕ x₂. (iii)(x₁ ⊕ x₂)' * x₃. (b) Obtain the principal disjunctive and conjunctive normal forms of the statement 	canonical
$(\exists P \to R) \land (Q \leftrightarrow P) \tag{1}$	10 + 10)
20. (a) State and prove Stone representation theorem.	
(b) Prove that for any commutative monoid $(M, *)$, the set of idempotent elements of M	<i>I</i> forms a
submonoid. (1	10 + 10)
21. (a) Let X be a set containing n elements and X^* denote the free semigroup generated 1	by X, and
(S, \oplus) be any other semigroup generated by any <i>n</i> generators. Show that there	exists a

 (S, \oplus) be any other semigroup generated by any *n* generators. Show that there exists a homomorphism $g: X^* \to S$.

(b) Show that $P \to Q, P \to R, Q \to \exists R \text{ and } P \text{ are inconsistent.}$ (10 + 10)

- 22. (a) Prove that the set of all divisors of 24 under the relation of division is a lattice.
 - (b) Verify using rules of inference whether $S \lor R$ is tautologically implied by

 $(P \lor Q) \land (P \to R) \land (Q \to S).$ (10+10)

Answer any TWO questions

 $(2 \times 20 = 40)$